জটিল সংখ্যা এবং এর জ্যামিতিক প্রতিরূপ (Argand Diagram) গণিতের একটি গুরুত্বপূর্ণ বিষয়। Argand Diagram হল একটি বিশেষ ধরনের কার্টেসিয়ান সমতল, যেখানে জটিল সংখ্যাকে জ্যামিতিক আকারে উপস্থাপন করা হয়।
জটিল সংখ্যা \( z = a + bi \) কে Argand Diagram এ নিম্নরূপ উপস্থাপন করা যায়:
একটি জটিল সংখ্যা \( z = a + bi \) কে \( (a, b) \) বিন্দুর মাধ্যমে Argand Diagram এ উপস্থাপন করা হয়। এই বিন্দুটি জটিল সংখ্যা এর স্থানাঙ্ক বা স্থিতি (position) নির্দেশ করে। উদাহরণস্বরূপ:
জটিল সংখ্যা \( z = a + bi \)-এর দুটি গুরুত্বপূর্ণ মান হলো মডুলাস এবং আর্গুমেন্ট।
জটিল সংখ্যা \( z = a + bi \)-এর মডুলাস হলো সেই বিন্দু থেকে মূলবিন্দুর (origin) দূরত্ব। মডুলাসের সূত্র হলো:
\[
|z| = \sqrt{a^2 + b^2}
\]
যেমন, \( z = 3 + 4i \) এর জন্য মডুলাস হবে \( |z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \)।
আর্গুমেন্ট হলো জটিল সংখ্যাটি x-অক্ষের সাথে যে কোণ তৈরি করে। এটি θ দ্বারা প্রকাশ করা হয়। আর্গুমেন্টের সূত্র হলো:
\[
\theta = \tan^{-1} \left(\frac{b}{a}\right)
\]
যেমন, \( z = 3 + 4i \) এর জন্য আর্গুমেন্ট হবে \( \theta = \tan^{-1} \left(\frac{4}{3}\right) \)।
জটিল সংখ্যা \( z = a + bi \)-কে ধ্রুবক আকার বা Polar Form এ প্রকাশ করা যায়:
\[
z = r (\cos \theta + i \sin \theta)
\]
এখানে,
Argand Diagram ব্যবহার করে জটিল সংখ্যা গাণিতিকভাবে সহজে বিশ্লেষণ করা যায়। এটি জটিল সংখ্যা যোগ, বিয়োগ, গুণ এবং ভাগ প্রক্রিয়াগুলোকে চিত্রিত করার জন্যও কার্যকর।
Argand Diagram গণিত এবং প্রকৌশলে গুরুত্বপূর্ণ ভূমিকা পালন করে, কারণ এটি জটিল সংখ্যাকে সহজে দৃশ্যমান করে এবং বিভিন্ন গাণিতিক অপারেশনকে সহজভাবে উপস্থাপন করতে সাহায্য করে।
আরও দেখুন...